Full manipulation of transparency and absorption through direct tuning of dark modes in high-Q Fano metamaterials

Author:

Kim Seontae1,Hong Dongpyo2,Sattorov Matlabjon12,Kim Seonmyeong1,Yoo Young Joon2,Park Sang Yoon2,Park Gun-Sik12

Affiliation:

1. College of Natural Science, Seoul National University

2. Advanced Institutes of Convergence Technology

Abstract

Controlling the line shape of Fano resonance has continued to attract significant research attention in recent years owing to its practical applications such as lasing, biosensing, and slow-light devices. However, controllable Fano resonances always require stringent alignment of complex symmetry-breaking structures; therefore, the manipulation can only be performed with limited degrees of freedom and a narrow tuning range. This work demonstrates dark-mode excitation tuning independent of the bright mode for the first time, to the authors’ knowledge, in asymmetric Fano metamaterials. Metallic subwavelength slits are arranged to form asymmetric unit cells and generate a broad and bright (radiative) Fabry–Perot mode and a sharp and dark (non-radiative) surface mode. The introduction of the independent radial and angular asymmetries realizes independent control of the Fano phase (q) and quality factor (Q). This tunability provides a dynamic phase shift while maintaining a high-quality factor, enabling switching between nearly perfect transmission and absorption, which is confirmed both numerically and experimentally. The proposed scheme for fully controlled Fano systems can aid practical applications such as phase-sensitive switching devices.

Funder

National Research Foundation of Korea

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3