Characterization of intensity correlation via single-photon detection in quantum key distribution

Author:

Xing Tianyi,Liu Junxuan,Zhang Likang1,Wang Min-Yan1,Li Yu-Huai1,Liu Ruiyin,Peng Qingquan,Wang DongyangORCID,Wang Yaxuan,Liu Hongwei2,Li Wei1,Cao Yuan1ORCID,Huang Anqi

Affiliation:

1. University of Science and Technology of China

2. China Information Technology Security Evaluation Center

Abstract

One of the most significant vulnerabilities in the source unit of quantum key distribution (QKD) is the correlation between quantum states after modulation, which shall be characterized and evaluated for its practical security performance. In this work, we propose a methodology to characterize the intensity correlation according to the single-photon detection results in the measurement unit without modifying the configuration of the QKD system. In contrast to the previous research that employs extra classical optical detector to measure the correlation, our method can directly analyse the detection data generated during the raw key exchange, enabling to characterize the feature of correlation in real-time system operation. The basic method is applied to a BB84 QKD system and the characterized correlation decreases the secure key rate shown by the security proof. Furthermore, the method is extended and applied to characterize the correlation from the result of Bell-state measurement, which demonstrates its applicability to a running full-scheme MDI QKD system. This study provides an approach for standard certification of a QKD system.

Funder

National Key Research and Development Program of China

Innovation Program for Quantum Science and Technology

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3