Reducing the computational complexity of high-resolution hologram calculations using polynomial approximation

Author:

Shiomi HarutakaORCID,Shimobaba TomoyoshiORCID,Kakue TakashiORCID,Ito TomoyoshiORCID

Abstract

In this paper, we have proposed a hologram calculation method using polynomial approximations for reducing the computational complexity of point-cloud-based hologram calculations. The computational complexity of existing point-cloud-based hologram calculations is proportional to the product of the number of point light sources and hologram resolution, whereas that of the proposed method can be reduced to approximately proportional to the sum of the number of point light sources and hologram resolution by approximating the object wave with polynomials. The computation time and reconstructed image quality were compared with those of the existing methods. The proposed method was approximately 10 times faster than the conventional acceleration method, and did not produce significant errors when the object was far from the hologram.

Funder

Institute for Advanced Academic Research, Chiba University

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3