Affiliation:
1. Flatiron Institute
2. University of Minnesota
Abstract
A new algorithmic framework is developed for holographic coherent diffraction imaging (HCDI) based on maximum likelihood estimation (MLE). This method provides superior image reconstruction results for various practical HCDI settings, such as when data is highly corrupted by Poisson shot noise and when low-frequency data is missing due to occlusion from a beamstop apparatus. This method is also highly robust in that it can be implemented using a variety of standard numerical optimization algorithms, and requires fewer constraints on the physical HCDI setup compared to current algorithms. The mathematical framework developed using MLE is also applicable beyond HCDI to any holographic imaging setup where data is corrupted by Poisson shot noise.
Subject
Atomic and Molecular Physics, and Optics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献