Affiliation:
1. Chinese Academy of Sciences
2. University of Chinese Academy of Sciences
3. Beijing University of Technology
4. Shanghai Earthquake Agency
5. Zhangjiang Laboratory
Abstract
Mountain dynamic response monitoring plays important roles in geological disaster evolution monitoring and warning. A distributed mountain seismic monitoring and steady-state analysis method is demonstrated with distributed acoustic sensing (DAS) and a natural earthquake stimulus. In the field test, the seismic detection capability is first verified by comparing the recorded seismic waveforms from DAS and existing seismic stations. The vibration signal difference between steady-state and unsteady-state mountain parts is apparent; the operational modal analysis method is utilized to extract the response difference and to monitor the disaster evolution process. The proposed method has many advantages, including being easy to deploy, all-weather online monitoring, etc. It is believed that the proposed method will broaden the DAS application scope and promote the development of geological disaster early warning such as landslides and collapses.
Funder
National Natural Science Foundation of China
Key Technologies Research and Development Program
Natural Science Foundation of Shanghai
Shanghai Rising-Star Program
Chinese Academy of Sciences
Youth Innovation Promotion Association of the Chinese Academy of Sciences
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献