PLS performance analysis of the vertical UWOC system with perfect and imperfect CSI

Author:

Li Shuang,Wang Ping,Li Ganggang,Zhang Xindan,Li Hao,Zhou Binna,Yang Ting

Abstract

Although underwater wireless optical communication (UWOC) receives much interest lately, security issues associated with it get little attention. In this work, it is the first attempt to investigate the physical layer security (PLS) performance of the vertical UWOC system with perfect and imperfect channel state information (CSI). Specifically speaking, the communication between two legitimate peers in the presence of an external eavesdropper is studied from the information-theoretic security perspective. Assuming that turbulence-induced fading over the vertical UWOC links is respectively subject to cascaded lognormal (LN) and Gamma-Gamma (GG) distributions for weak and moderate/strong turbulence conditions, and the angular pointing error is randomized by the Beckmann distribution, the composite cascaded statistical fading models are derived with the comprehensive effects of path loss, underwater turbulence, angular pointing errors, and channel estimation error. On the basis of these models, analysis frameworks of the probability of strictly positive secrecy capacity (SPSC), secrecy outage probability (SOP), and average secrecy capacity (ASC) are further obtained for this UWOC system, which are confirmed by Monte Carlo (MC) simulations. Furthermore, the effects including the number of layers, the level of channel estimation error, the link distance, the location of the eavesdropper, the quality of the main and eavesdropping channels on this system are analyzed for different water conditions. The presented results give valuable insights into the practical aspects of deployment of UWOC networks.

Funder

National Natural Science Foundation of China

Key Research and Development Projects of Shaanxi Province

Fundamental Research Funds for the Central Universities and the Innovation Fund of Xidian University

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3