Affiliation:
1. University of Shanghai for Science and Technology
Abstract
By implementing neuromorphic paradigms in processing visual information, machine learning became crucial in an ever-increasing number of applications of our everyday lives, ever more performing but also computationally demanding. While a pre-processing of the information passively in the optical domain, before optical-electronic conversion, can reduce the computational requirements for a machine learning task, a comprehensive analysis of computational requirements for hybrid optical-digital neural networks is thus far missing. In this work we critically compare and analyze the performance of different optical, digital and hybrid neural network architectures with respect to their classification accuracy and computational requirements for analog classification tasks of different complexity. We show that certain hybrid architectures exhibit a reduction of computational requirements of a factor >10 while maintaining their performance. This may inspire a new generation of co-designed optical-digital neural network architectures, aimed for applications that require low power consumption like remote sensing devices.
Funder
Science and Technology Commission of Shanghai Municipality
Shanghai Rising-Star Program
National Natural Science Foundation of China
Natural Science Foundation of Shanghai
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Hybrid Nanoprinted Neural Networks;2024 IEEE Photonics Society Summer Topicals Meeting Series (SUM);2024-07-15