Affiliation:
1. Jilin University
2. College of Physics and Electronic Engineering
Abstract
A high electrical field is necessary to achieve a high brightness for halide perovskite light-emitting diodes (PeLEDs). Charge accumulation in the perovskite film becomes more serious under a high electrical field owing to the imbalanced charge injection in PeLEDs. Concomitantly, the perovskite film will suffer from a higher electrical field increased by the accumulated-charge-induced local electrical field, dramatically accelerating the ion migration and degradation of PeLEDs. Here we construct a voltage-dependent hole injection structure consisting of a ZnO/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) bilayer, which can properly adjust the hole injection according to the driving electrical field, matching with the injected electrons. As a result, the ZnO/PEDOT:PSS-containing PeLED can be operated under higher driving voltage with a higher peak brightness of 18920 cd/m2, which is 84% higher than the reference device based on a PEDOT:PSS single layer. Moreover, the ZnO/PEDOT:PSS-containing PeLED delivers a much higher power efficiency than the reference device under high driving voltages.
Funder
National Natural Science Foundation of China
Key Science Fund of Educational Department of Henan Province of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献