Affiliation:
1. Universidad Autónoma de Chihuahua
2. Centro de Investigación en Materiales Avanzados S.C, (CIMAV)
Abstract
Topological corner states have been used to develop topologically robust Fano-resonant systems immune to structural perturbations while preserving the ultra-sensitive profiles under external factors. In this work, we have extended the possibility of obtaining Fano-resonant systems by introducing type-II and type-III corner states with a large modal surface to this class of resonance. Through photonic lattices with low symmetry, such as C2, it is easy to obtain type-II and type-III corner states due to the tailoring of long-range interactions. Subsequently, one can combine topological cavities of type-II and type-III corner modes with topological waveguides obtained from a first-order topological insulating phase. Our results may pave the way to generate devices suitable for creating non-classical light applicable in quantum computing and ultra-sensitive sensors employing large-area topological states.