Laser frequency noise correction in LFM-based interferometric fiber-optic hydrophone array

Author:

Zhao Mengyuan1,Mao Ying1,Wang Zexu1,Cen Qizhuang2ORCID,Yin Feifei1,Xu Kun1,Dai Yitang1

Affiliation:

1. Beijing University of Posts and Telecommunications

2. Institute of Semiconductors

Abstract

In this paper, we propose a novel time-division multiplexed (TDM) array for a large-scale interferometric fiber-optic hydrophone system, in which we introduce a power-optimized reference probe and effectively reduce the additional white noise while correcting for light source frequency noise. Laser frequency noise usually introduces appreciable phase noise during demodulation of interferometric fiber-optic hydrophones. In the previous means, one would introduce an additional probe isolated from the environment in sensor array, and use it as a reference to calibrate the demodulation results of the other actual sensors. However, while correcting, the reference probe also introduces a large white noise. In our array, the echo of the reference probe is higher than the other sensors, thus solving this problem. The novel array design is applied to our previously proposed fiber-optic hydrophone based on a linear frequency modulated (LFM) light source. Experiments show that the deterioration of phase noise floor caused by additional white noise is improved from at least 3 dB originally to within 1 dB. This paper analyzes the factors that need to be concerned for the successful implementation of correction algorithms in hydrophone systems based on LFM sources. Particular focus is given to the impact of the power optimization of reference probe on the white noise and the corrected phase noise. Our proposal allows a significant relaxation of the demanding linewidth requirement for interferometric hydrophone. It is shown that laser with linewidth of 338.06 MHz can replace that with 1.417 kHz in our new system, while achieves the same demodulation noise floor.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3