Disaggregated optical-layer switching for optically composable disaggregated computing [Invited]

Author:

Ishii KiyoORCID,Matsumoto Ryosuke,Inoue TakashiORCID,Namiki ShuORCID

Abstract

Disaggregated computing has been widely investigated to support the continuous progress in computing performance and overcome the slowdown of Moore’s law. It involves a flexible and optimal interconnection of heterogeneous compute nodes, such as the CPU, GPU, xPU, memory, and storage, to offer an efficient computing environment for various applications. Such a scheme inherently requires high network performance, including low latency, high capacity, determinism, and energy efficiency, all of which are simultaneously achieved through the introduction of optical-layer switching. This paper presents the application of optical-layer-switching architectures to disaggregated computing. Networks associated with disaggregated computing are classified into intra- and interserver networks. Focusing on the intraserver network, a holistic concept of optically composable disaggregated computing (OCDC) is discussed, along with its technological direction toward future digital infrastructure (i.e., the computing continuum). To realize OCDC, scalable and flexible optical switch technologies, as well as their dynamic and automatic control and management mechanisms, are indispensable. Previous studies have reported 32 × 32 silicon photonic switches that can form a nine-stage Clos topology with a radix of 131,072 and a machine-processable function description model for optical-layer switching, called the functional block-based disaggregation model (FBD model) that is capable of automating the operation, administration, and management of any optical physical topology in cooperation with upper-layer operating systems. This study examines their applicability to OCDC. The superior energy performance and scaling of an OCDC system equipped with optical matrix switches, such as silicon photonic switches, with respect to the conventional one big electrical packet-switching approach based on the reported wall-plug power consumption is also presented. The potential applicability of the FBD model as an essential control and management system for the optical layer of OCDC is evaluated through numerical experiments.

Funder

Japan Society for the Promotion of Science

Publisher

Optica Publishing Group

Subject

Computer Networks and Communications

Reference44 articles.

1. Towards a composable computer system;Chung,2018

2. Towards a cognitive compute continuum: an architecture for ad-hoc self-managed swarms;Ferrer,2021

3. Harnessing the computing continuum for programming our world;BeckmanZomaya,2020

4. E2Clab: exploring the computing continuum through repeatable, replicable and reproducible edge-to-cloud experiments;Rosendo,2020

5. Towards power-efficient data-center networks;Shi,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3