Affiliation:
1. The Hong Kong Polytechnic University
2. Sun Yat-sen University
3. Soochow University
4. The Hong Kong Polytechnic University Shenzhen Research Institute
Abstract
A receive-diversity-aided power-fading compensation (RDA-PFC) scheme is proposed and demonstrated to eliminate the chromatic dispersion (CD)-induced power fading for C-band double-sideband (DSB) intensity modulation and direct detection (IM/DD) orthogonal frequency division multiplexing (OFDM) systems. By combining the responses before and after a dispersive element using a maximal-ratio combining (MRC) algorithm, the CD-induced power fading dips within the signal bandwidth of around 50 GHz can be effectively compensated for, which results in an up to 17.6-dB signal-to-noise ratio (SNR) improvement for the fading subcarriers after transmission over 10 km of standard single-mode fiber (SSMF). Using the 16 quadrature amplitude modulation (QAM) format, a diversity receiver with the proposed RDA-PFC scheme can support 170.6-Gbit/s OFDM signal transmission over a 10-km SSMF and reduces the bit error rate (BER) by more than an order of magnitude compared with a conventional receiver. Moreover, 208.1-Gbit/s adaptive bit and power loading OFDM signal transmission over a 10-km SSMF is realized by the proposed RDA-PFC scheme, which improves the capacity by 15.3% compared with the case without RDA-PFC at a BER of 3.8 × 10−3. The proposed RDA-PFC scheme shows great potential in CD-induced power-fading compensation for high-speed IM/DD OFDM systems.
Funder
National Natural Science Foundation of China
Shenzhen Municipal Science and Technology Innovation Council
The Hong Kong Government General Research Fund
Hong Kong Polytechnic University
PolyU Postdoc Matching Fund Scheme of the Hong Kong Polytechnic University
China Postdoctoral Science Foundation
Subject
Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献