Single-frame double-grating interferometry with two inherent-phase-shifted interferograms

Author:

Rasouli SaifollahORCID,Khoshkhatti SamanehORCID

Abstract

In this work, we introduce a novel self-referencing, common-path, double-grating interferometry method for studying slowly varying phase samples. Two plane wave diffraction orders of the gratings, namely (0,+1) and (+1,0), with a certain phase difference, interfere with each other in a single frame. When a phase sample is applied in the middle of the impinging beam, two simultaneous inherent phase-shifted interferograms are generated on either side of the interference pattern. In one interferogram, the sample phase is added to (0,+1), while in the second one, the sample phase is added to (+1,0). Consequently, the phase of the first interferogram increases by the amount of the sample phase, while in the second interferogram, it decreases by the same amount. Without a phase sample, both interferograms have uniform intensity and value since the two interfering beams have the same phase difference in both patterns. We observe that the intensity changes in the two interferograms due to the phase sample, depending on the initial phase difference between the two interfering beams, can be equal or unequal, and in certain circumstances, they can be even complementary. We introduce a specific phase difference between the interfering orders by precisely controlling the separation between two diffraction gratings. This allows us to extract the sample's phase information from the resulting pair of interferograms. This setup enables us to obtain the sample phase without applying an additional phase shift(s) between the interfering beams. The method was applied to a thermal lens induced in a nonlinear liquid sample containing absorbent nanoparticles. The proposed method is characterized by its simplicity, accuracy, and insensitivity to vibrations, making it well-suited for analyzing dynamic samples with millimeter scales, such as nearly transparent organisms. The theory, simulations, and experimental results presented in this paper are found to be consistent. Unlike conventional methods, our approach does not necessarily require a reference interferogram. Additionally, when the absolute value of phase changes over the sample area and time is less than π, the raw phase pattern precisely matches the reconstructed phase pattern of the sample, eliminating the need for a phase-reconstructing algorithm. The phase pattern can be accurately calculated from the interferograms using an arcsine function without needing a fast Fourier transform. Compared to Fourier-based methods, the phase extraction process for each frame in our approach is 60 times faster. As a result, this technique operates in real-time for |φ(x, y;t) | < π.

Funder

Iran National Science Foundation

Institute for Advanced Studies in Basic Sciences

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3