Monopulse ladar: super-resolved 3D localization with Si-photonic serpentine optical phased arrays

Author:

Philbrick Channing P.1ORCID,Wagner Kelvin H.ORCID

Affiliation:

1. Tactical Solutions–Imaging & Surveillance, Ball Aerospace & Technologies Corporation

Abstract

We present an optical ranging and super-resolution object localization method, monopulse ladar, used to determine the angle of a point target in two dimensions to a few percent of an optical beam width from differential measurements of four just-resolved waveform-encoded beams while simultaneously providing target range via either coherent or incoherent coded waveform correlation. A common optical carrier is shifted by four GHz-scale tones, each modulated with distinct ranging waveforms, which when transmitted from a Si-photonic 2D wavelength-steered serpentine optical phased array (SOPA) aperture form an encoded rectangular beam cluster that propagates to and scatters from a distant point target. Superposed backscattered target returns from each beam are decoded by correlation with reference waveforms at the receiver. The angular position of the target along the two orthogonal axes is calculated from pairwise ratios of beam amplitudes, while target range is determined from the round-trip time delay of each beam as measured with a wideband correlation peak. The analysis of coherent and incoherent monopulse ladar architectures presented herein indicates that a 50-fold increase in angular resolution—to the tens of arcseconds level—of a point target located within a wide field of regard is achievable while maintaining cm-scale resolution-limited ranging using a single SOPA tile transmitter, with further improvement in angular resolution possible through arrayed tiling of SOPAs. Implementation of monopulse ladar with a SOPA aperture enables non-mechanically steered high-resolution 3D object localization in a compact, low-control complexity form factor.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3