Physical-layer impairment estimation for arbitrary spectral-shaped signals in optical networks

Author:

Xu Yuxin1,Brandt-Pearce Maite2ORCID

Affiliation:

1. Zhejiang University of Technology

2. University of Virginia

Abstract

In long-haul fiber-optic networks, precise modeling of physical-layer impairments (PLIs) is crucial to optimizing network resource usage while ensuring adequate transmission quality. In order to accurately estimate PLIs, many mathematical models have been proposed. Among them, the so-called Gaussian noise (GN) model is one of the most accurate and simple enough to use on complex continental-size networks. However, the closed-form GN model assumes that the signals can be represented as having rectangular spectra, leading to a significant estimation error in typical cases when this assumption is violated. We propose the component-wise Gaussian noise (CWGN) PLI model that can account for arbitrary spectral-shaped demands. The CWGN model is computationally simple and suitable for most network management approaches. Results indicate that the CWGN model can prevent as much as a 136% overestimation of the PLIs resulting from the closed-form GN model applied to network lightpaths containing cascaded filters.

Funder

National Science Foundation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3