Polarization-dependent reconfigurable light field manipulation by liquid-immersion metasurface

Author:

He Ke,Tang Tingting1ORCID,Bi Lei2ORCID,Liang Xiao,Li JieORCID,Li Chaoyang3,Qin Jun2,Kang Tongtong2

Affiliation:

1. State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization

2. University of Electronic Science and Technology of China

3. Hainan University

Abstract

Traditional grating lenses can accumulate phase for adjusting wavefronts, and plasmonic resonances can be excited in metasurfaces with discrete structures for optical field modulation. Diffractive and plasma optics have been developing in parallel, with easy processing, small size, and dynamic control advantages. Due to theoretical hybridization, structural design can combine advantages and show great potential value. Changing the shape and size of the flat metasurface can easily produce light field reflections, but changes in height are rarely cross-explored. We propose a graded metasurface with a single-structure periodic arrangement, which can mix the effects of plasmonic resonance and grating diffraction. As for solvents of different polarities, strong polarization-dependent beam reflections are produced, enabling versatile beam convergence and deflection. Dielectric/metal nanostructures with selective hydrophobic/hydrophilic properties can be arranged by the structural material specification to selectively settle the location of the solution in a liquid environment. Furthermore, the wetted metasurface is actively triggered to achieve spectral control and initiate polarization-dependent beam steering in the broadband visible light region. Actively reconfigurable polarization-dependent beam steering has potential applications in tunable optical displays, directional emission, beam manipulation and processing, and sensing technologies.

Funder

National Natural Science Foundation of China

Chengdu Technology Innovation and Research and Development Project

Open Project Program of State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization

Sichuan Science and Technology Program

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3