ICESat-2 laser data denoising algorithm based on a back propagation neural network

Author:

Meng Wenjun1,Li Jie2ORCID,Tang Qiuhua2ORCID,Xu Wenxue2,Dong Zhipeng2

Affiliation:

1. College of Mapping and Spatial Information, Shandong University of Science and Technology

2. Key Laboratory of Marine Mapping, Ministry of Natural Resources

Abstract

The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) photon data is the emerging satellite-based LiDAR data, widely used in surveying and mapping due to its small photometric spot and high density. Since ICESat-2 data collect weak signals, it is difficult to denoise in shallow sea island areas, and the quality of the denoising method will directly affect the precision of bathymetry. This paper proposes a back propagation (BP) neural network-based denoising algorithm for the data characteristics of shallow island reef areas. First, a horizontal elliptical search area is constructed for the photons in the dataset. Suitable feature values are selected in the search area to train the BP neural network. Finally, data with a geographic location far apart, including daily and nightly data, are selected respectively for experiments to test the generality of the network. By comparing the results with the confidence labels provided in the official documents of the ATL03 dataset, the DBSCAN algorithm, and the manual visual interpretation, it is proved that the denoising algorithm proposed in this paper has a better processing effect in shallow island areas.

Funder

National Natural Science Foundation of China

Key Laboratory of Ocean Geomatics, Ministry of Natural Resources China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3