Efficient polarization-insensitive quasi-BIC modulation by VO2 thin films

Author:

Zhong Hongkun1ORCID,He Tiantian1,Wang Yuhao2,Qi Tiancheng1ORCID,Meng YuanORCID,Li Dan1,Yan Ping1ORCID,Xiao Qirong1ORCID

Affiliation:

1. Key Laboratory of Photonic Control Technology (Tsinghua University)

2. Tsinghua University

Abstract

Bound states in the continuum (BIC) offer great design freedom for realizing high-quality factor metasurfaces. By deliberately disrupting the inherent symmetries, BIC can degenerate into quasi-BIC exhibiting sharp spectra with strong light confinement. This transformation has been exploited to develop cutting-edge sensors and modulators. However, most proposed quasi-BICs in metasurfaces are composed of unit cells with Cs symmetry that may experience performance degradation due to polarization deviation, posing challenges in practical applications. Addressing this critical issue, our research introduces an innovative approach by incorporating metasurfaces with C4v unit cell symmetry to eliminate polarization response sensitivity. Vanadium Dioxide (VO2) is a phase-change material with a relatively low transition temperature and reversibility. Here, we theoretically investigate the polarization-insensitive quasi-BIC modulation in Si-VO2 hybrid metasurfaces. By introducing defects into metasurfaces with Cs, C4, and C4v symmetries, we enable the emergence of quasi-BICs characterized by strong Fano resonance in their transmission spectra. Via numerically calculating the multipole decomposition, distinct dominant multipoles for different quasi-BICs are identified. A comprehensive investigation into the polarization responses of these structures under varying directions of linearly polarized light reveals the superior polarization-independent characteristics of metasurfaces with C4 and C4v symmetries, a feature that ensures the maintenance of maximum resonance peaks irrespective of polarization direction. Utilizing the polarization-insensitive quasi-BIC, we thus designed two different Si-VO2 hybrid metasurfaces with C4v symmetry. Each configuration presents complementary benefits, leveraging the VO2 phase transition's loss change to facilitate efficient modulation. Our quantitative calculation indicates notable achievements in modulation depth, with a maximum relative modulation depth reaching up to 342%. For the first time, our research demonstrates efficient modulation using polarization-insensitive quasi-BICs in designed Si-VO2 hybrid metasurfaces, achieving identical polarization responses for quasi-BIC-based applications. Our work paves the way for designing polarization-independent quasi-BICs in metasurfaces and marks a notable advancement in the field of tunable integrated devices.

Funder

National Natural Science Foundation

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3