Experimental demonstration of a “pin-like” low-divergence beam in a 1-Gbit/s OOK FSO link using a limited-size receiver aperture at various propagation distances

Author:

Hu Nanzhe,Zhou Huibin,Zhang RunzhouORCID,Song HaoqianORCID,Pang KaiORCID,Zou Kaiheng,Song HaoORCID,Su XinzhouORCID,Liu Cong,Lynn Brittany1,Tur Moshe2,Willner Alan E.3

Affiliation:

1. Space & Naval Warfare Systems Center

2. Tel Aviv University

3. University of Southern California

Abstract

In free-space optical (FSO) communications, there are scenarios (e.g., from a ground station to a drone/airplane) in which: (i) the transmitter (Tx) can have a relatively large aperture whereas the receiver (Rx) aperture should preferably be much smaller, and (ii) the distance between the Tx and Rx can vary such that beam divergence will cause a variation in the recovered signal power. In such cases, transmission using a fundamental Gaussian beam can be significantly degraded due to beam truncation caused by a limited-size Rx aperture. Here, we experimentally demonstrate a 1-Gbit/s on-off keying (OOK) FSO transmission link using a structured “pin-like” beam with a limited-size Rx aperture at various distances. The pin-like beam is generated by passing a Gaussian beam through an “Airy-type” phase pattern in the radial direction. When propagating, this structured beam first narrows and then tends to maintain its narrow beam size over a fairly wide range of distances. In comparison to its Gaussian counterpart, our experimental results show that the pin-like beam has ∼13 to 8 dB less power loss at distances ranging from 0.45 m to 0.8 m with an Rx aperture diameter of 1 mm. Moreover, we simulate the propagation of the pin-like beam and show its relatively lower power loss for a wide distance variation in a longer link (e.g., ∼1 km) with a limited-size Rx aperture. Furthermore, our results show that the pin-like beam can have a wider range of low-power-loss distances than a Gaussian beam that is focused to a given distance.

Funder

Office of Naval Research

Airbus Institute for Engineering Research

Defense Security Cooperation Agency

Naval Information Warfare Center Pacific

Qualcomm Innovation Fellowship

DURIP

Air Force Office of Scientific Research

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3