Affiliation:
1. Nanjing University of Information Science & Technology
2. China Unicom Research Institute
Abstract
A mode division multiplexing (MDM) chaotic encryption scheme based on key intertwining and accompanying transmission is proposed in this paper. Based on the weakly coupled few-mode fiber (FMF), data and time-varying keys can be accompanied by transmission in two modes, LP01 and LP11, respectively. In order to generate a new key, the current key is XORed with all of the keys from all the preceding moments, one by one. To implement chaotic masking in the digital domain, the three chaotic sequences corresponding to the new key are adopted to encrypt the data at the constellation phase, data symbol block, and subcarrier levels. An 8.89 Gb/s encrypted 16QAM-OFDM signal transmission over 1 km weakly-coupled FMF is experimentally demonstrated. The receiver with the correct key can recover the data normally, while the BER of the illegal receiver remains around 0.5. In the case of the key transmission bit rate of 1 Gb/s, the cracking efficiency threshold of the time-varying key encryption scheme is 5.21 × 106 times that of the time-invariant key encryption scheme, which suggests that the proposed work is a promising candidate for future physical layer security.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Jiangsu Provincial Key Research and Development Program
The Natural Science Foundation of the Jiangsu Higher Education Institutions of China
Jiangsu team of innovation and entrepreneurship
The Startup Foundation for Introducing Talent of NUIST
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献