Computing a projection operator onto the null space of a linear imaging operator: tutorial

Author:

Kuo Joseph1,Granstedt Jason1,Villa Umberto2,Anastasio Mark A.1

Affiliation:

1. University of Illinois at Urbana-Champaign

2. Washington University in St. Louis

Abstract

Many imaging systems can be approximately described by a linear operator that maps an object property to a collection of discrete measurements. However, even in the absence of measurement noise, such operators are generally “blind” to certain components of the object, and hence information is lost in the imaging process. Mathematically, this is explained by the fact that the imaging operator can possess a null space. All objects in the null space, by definition, are mapped to a collection of identically zero measurements and are hence invisible to the imaging system. As such, characterizing the null space of an imaging operator is of fundamental importance when comparing and/or designing imaging systems. A characterization of the null space can also facilitate the design of regularization strategies for image reconstruction methods. Characterizing the null space via an associated projection operator is, in general, a computationally demanding task. In this tutorial, computational procedures for establishing projection operators that map an object to the null space of a discrete-to-discrete imaging operator are surveyed. A new machine-learning-based approach that employs a linear autoencoder is also presented. The procedures are demonstrated by use of biomedical imaging examples, and their computational complexities and memory requirements are compared.

Funder

National Institutes of Health

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference66 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3