Accurate and fast reconstruction for bioluminescence tomography based on adaptive Newton hard thresholding pursuit algorithm

Author:

Wang Yuejie1,Zhang Heng1,Guo Hongbo1ORCID,Wang Beilei1,Liu Yanqiu1,He Xuelei1,Yu Jingjing2ORCID,Yi Huangjian1,He Xiaowei1ORCID

Affiliation:

1. Northwest University

2. Shaanxi Normal University

Abstract

As a promising noninvasive medical imaging technique, bioluminescence tomography (BLT) dynamically offers three-dimensional visualization of tumor distribution in living animals. However, due to the high ill-posedness caused by the strong scattering property of biological tissues and the limited boundary measurements with noise, BLT reconstruction still cannot meet actual preliminary clinical application requirements. In our research, to recover 3D tumor distribution quickly and precisely, an adaptive Newton hard thresholding pursuit (ANHTP) algorithm is proposed to improve the performance of BLT. The ANHTP algorithm fully combines the advantages of sparsity constrained optimization and convex optimization to guarantee global convergence. More precisely, an adaptive sparsity adjustment strategy was developed to obtain the support set of the inverse system matrix. Based on the strong Wolfe line search criterion, a modified damped Newton algorithm was constructed to obtain optimal source distribution information. A series of numerical simulations and phantom and in vivo experiments show that ANHTP has high reconstruction accuracy, fast reconstruction speed, and good robustness. Our proposed algorithm can further increase the practicality of BLT in biomedical applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi

Postdoctoral Innovative Talents Support Program

Scientific and Technological projects of Xi’an

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3