Effect of surface anchoring energy on a liquid crystal optical waveguide-based polarization rotator

Author:

Zha ZhengtaoORCID

Abstract

This study reports the effect of the surface anchoring energy of a liquid crystal (LC) cell on the performance of the liquid crystal optical waveguide polarization rotator (LCOW-PR) for the purpose of providing a theoretical reference for practical preparation of the LCOW-PR. First, the expression for the deflection angle of the director at the boundary of the LC cell is derived so that the distributions of the director and dielectric tensor of the LC can be accurately solved under any anchoring energy. On this basis, the correlation between the crucial indicators such as the polarization conversion length (PCL) together with the polarization conversion efficiency (PCE) of the LCOW-PR and the anchoring effect strength is constructed by combining with the existing numerical algorithms. The numerical results show that the maximum variation of the PCL is lower than 0.1 µm as the anchoring effect strength increases from 1×10−6J/m2 to 1×10−3J/m2, while the PCE decreases from 99.72% to 78.33%. This implies that the PCL of the LCOW-PR does not depend on the surface anchoring energy, but the anchoring effect strength of the orientational layer must be controlled to the order of 10−6J/m2 or even lower to achieve high-performance conversion between the polarization modes. Simultaneously, the effectiveness of the calculations in this work is verified with the help of the coupled mode theory as well as a comparison to previous reports.

Funder

Innovation and Entrepreneurship Project of China West Normal University

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3