Quantitative evaluation of the impact of variation of optical parameters on the estimation of blood hematocrit and oxygen saturation for dual-wavelength photoacoustics

Author:

Paul Subhadip,Patel Hari Shankar1,Saha Ratan K.ORCID

Affiliation:

1. Raja Ramanna Centre for Advanced Technology

Abstract

Photoacoustic (PA) spectroscopy is considered to be one of the most effective ways to measure the levels of hematocrit (H) and oxygenation saturation (SO2) of blood, which are essential for diagnosing blood-related illnesses. This simulation study aims to investigate the impact of individual optical parameters, i.e., optical absorption coefficient (μ a ), scattering coefficient (μ s ), and anisotropy factor (g), on the accuracy of this technique in estimating the blood properties. We first performed the Monte Carlo simulations, using realistic optical parameters, to obtain the fluence maps for various samples. The wavelengths of the incident light were chosen to be 532, 700, 1000, and 1064 nm. Thereafter, the k-Wave simulations were executed, incorporating those fluence maps to generate the PA signals. The blood properties were obtained using the PA signals. We introduced variations in μ a , μ s , and g ranging from −10% to +10%, −10% to +10%, and −5% to +1%, respectively, at 700 and 1000 nm wavelengths. One parameter, at both wavelengths, was changed at a time, keeping others fixed. Subsequently, we examined how accurately the blood parameters could be determined at physiological hematocrit levels. A 10% variation in μ a induces a 10% change in H estimation but no change in SO2 determination. Almost no change has been seen for μ s variation. However, a 5% (−5% to 0%) variation in the g factor resulted in approximately 160% and 115% changes in the PA signal amplitudes at 700 and 1000 nm, respectively, leading to ≈125% error in hematocrit estimation and ≈14% deviation in SO2 assessment when nominal SO2=70%. It is clear from this study that the scattering anisotropy factor is a very sensitive parameter and a small change in its value can result in large errors in the PA estimation of blood properties. In the future, in vitro experiments with pathological blood (inducing variation in the g parameter) will be performed, and accordingly, the accuracy of the PA technique in quantifying blood H and SO2 will be evaluated.

Funder

Indian Council of Medical Research

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3