Speckle noise suppression of a reconstructed image in digital holography based on the BM3D improved convolutional neural network

Author:

Chen Yuan,Fan Yuhui1,Zhang Guangming2,Wang Quan1,Li Sitian1,Wang Zhongyang1ORCID,Dong Ming1

Affiliation:

1. Xi’an University of Science and Technology

2. Liverpool John Moores University

Abstract

In digital holographic measurement, when light waves pass through inhomogeneous media or surfaces, speckle noise is generated, resulting in random, granular light and dark spots in the hologram, which greatly reduces the image quality. Therefore, in order to improve the image quality of holographic reconstruction, a noise reduction method based on the BM3D improved convolutional neural network (CNN) is proposed in this paper. Firstly, the similarity and important statistical information between blocks can be obtained by using BM3D. Then, the denoising convolutional neural network (DnCNN) is used to learn the relationship between the noise of a large number of samples and the noise image, and further purify the image to retain the details for a better denoising effect. Finally, a reflective off-axis digital holographic optical path system is constructed to collect the holograms of the test samples, and the reconstructed images are obtained by the Fresnel diffraction method to constitute a dataset with the simulated holographic reconstructed images to validate the proposed method in this paper, compared to the other methods, such as DnCNN, convolutional blind denoising network (CBDNet), BM3D, and Wiener filtering. The experimental results of qualitative and quantitative analyses show that the proposed method combines the advantages of traditional algorithms and deep learning, significantly enhances the robustness of the system, optimizes the denoising performance, and preserves the details of the reconstructed image to the greatest extent.

Funder

Scientific Research Plan Projects of Shaanxi Education Department

Natural Science Basic Research Program of Shaanxi Province

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3