Multifocal meta-fiber based on the fractional Talbot effect

Author:

Jiang Meiling1,Zhang Mingsi2,Xie Fei3,Qin FeiORCID,Sun Li-pengORCID,Li Xiangping,Cao YaoyuORCID

Affiliation:

1. Tianjin University of Technology and Education

2. Harbin Engineering University

3. Handan University

Abstract

Multi-focusing of light is a crucial capability for photonic devices that can be effectively achieved by precisely modulating the phase delay on the incident wavefront. However, integrating functional structures into optical fibers for remote light focusing remains challenging due to the complex device design and limited fabrication approaches. Here, we present the design and fabrication of metalens array on the end-face of a tailored single-mode step-index fiber for focusing light field into closely packed focal spot array. The metalenses are configured based on the fractional Talbot effect and benefit a modular design capability. Light passing through the optical fiber can be focused into different focal planes. With a synergistic 3D laser nanoprinting technique based on two-photon polymerization, high-quality meta-fibers are demonstrated for focusing light parallelly with a uniform numerical aperture (NA) as high as approximately 0.77. This may facilitate various applications such as optical trapping, generation of sophisticated beam profiles, and boosting light coupling efficiencies.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Hebei Key Laboratory of Optical Fiber Biosensing and Communication Devices

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3