High-performance temperature and pressure dual-parameter sensor based on a polymer-coated tapered optical fiber

Author:

Lu Junyang123ORCID,Yu Yang23ORCID,Qin Shangpeng123ORCID,Li Minwei123,Bian Qiang4,Lu Yang2,Hu Xiaoyang2,Yang Junbo2,Meng Zhou2,Zhang Zhenrong1ORCID

Affiliation:

1. Guangxi University

2. National University of Defense Technology

3. Chinese Academy of Sciences

4. Technical University Munich

Abstract

Based on the polymer encapsulation method, a compact structure and high-sensitivity temperature and pressure dual parametric sensor was developed in this paper by wrapping an optical microfiber coupler (OMC) in polydimethylsiloxane (PDMS). Benefiting from the stable chemical properties and good optical field control ability of PDMS, the sensor showed good stability and repeatability. The dependence of the sensor sensitivity on wavelength, temperature, and pressure was experimentally investigated. The results showed that the temperature and pressure sensitivity could reach −2.283 nm/°C and 3.301 nm/Mpa in the C-band range. To overcome the cross-sensitivity of sensor temperature and pressure, a sensitivity matrix was established to realize dual-parameter simultaneous demodulation. In addition, the pressure repeatability of the sensor was tested. Based on this, the sensitivity matrix was further calibrated to reduce the error and improve the accuracy of demodulation. Finally, we also designed a protective shell for the sensor to meet the requirements of practical marine applications. Compared with other existing types of optical fiber sensors, this sensor has the advantages of simple fabrication, high sensitivity, and environmental adaptability, and has great potential for application in the field of marine environmental monitoring.

Funder

National Natural Science Foundation of China

Guangxi Key Research and Development Program

Guangdong Guangxi Joint Science Key Foundation

State Key Laboratory of Transducer Technology of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3