Deep learning network for parallel self-denoising and segmentation in visible light optical coherence tomography of the human retina

Author:

Ye TianyiORCID,Wang Jingyu1,Yi Ji1ORCID

Affiliation:

1. Johns Hopkins University

Abstract

Visible light optical coherence tomography (VIS-OCT) of the human retina is an emerging imaging modality that uses shorter wavelengths in visible light range than conventional near-infrared (NIR) light. It provides one-micron level axial resolution to better separate stratified retinal layers, as well as microvascular oximetry. However, due to the practical limitation of laser safety and comfort, the permissible illumination power is much lower than NIR OCT, which can be challenging to obtain high-quality VIS-OCT images and subsequent image analysis. Therefore, improving VIS-OCT image quality by denoising is an essential step in the overall workflow in VIS-OCT clinical applications. In this paper, we provide the first VIS-OCT retinal image dataset from normal eyes, including retinal layer annotation and “noisy-clean” image pairs. We propose an efficient co-learning deep learning framework for parallel self-denoising and segmentation simultaneously. Both tasks synergize within the same network and improve each other’s performance. The significant improvement of segmentation (2% higher Dice coefficient compared to segmentation-only process) for ganglion cell layer (GCL), inner plexiform layer (IPL) and inner nuclear layer (INL) is observed when available annotation drops to 25%, suggesting an annotation-efficient training. We also showed that the denoising model trained on our dataset generalizes well for a different scanning protocol.

Funder

National Eye Institute

National Institute of Neurological Disorders and Stroke

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3