Affiliation:
1. Huazhong University of Science and Technology
Abstract
Fourier ptychographic microscopy (FPM) is used to achieve high resolution and a large field of view. However, traditional FPM image reconstruction methods often yield poor image quality when encountering out-of-focus issues during reconstruction. Therefore, this study proposes a defocus-distance regression network based on convolutional neural networks. In an experimental validation, the root-mean-square error calculated from 1000 sets of predicted and true values was approximately 6.2 µm. The experimental results suggest that the proposed method has good generalization, maintains high accuracy in predicting defocus distances even for different biological samples, and extends the imaging depth-of-field of the FPM system by a factor of more than 3.
Funder
Guangdong Provincial Key Field R&D Plan Project
Natural Science Foundation of Hubei Province
Foshan University
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献