Coherent angular signal amplification using an optical cavity

Author:

Shimoda Tomofumi1ORCID,Miyazaki Yuki1,Enomoto Yutaro1ORCID,Nagano Koji2,Ando Masaki1

Affiliation:

1. The University of Tokyo

2. Institute of Space and Astronautical Science

Abstract

Precision angular sensing is an essential technology in physical experiments. Unlike length sensing with a laser beam, it has been thought that sensitivity to the angular motion cannot be enhanced with the help of an optical cavity. A method of angular signal amplification using an optical cavity, called the cavity-amplified angular sensor (CAAS), is proposed. By adjusting or compensating for the Gouy phase of the cavity, the electric field of the laser generated in proportion to the target rotation is coherently stacked in the proposed method. The advantage of this method over other angular sensors is its high sensitivity with the small sensing spot size. Three possible optical configurations are considered, of which two experimentally available ones are investigated. The angular signal amplification is demonstrated for both of them. Based on the theoretical calculation for a realistic model, the fundamental angular sensing noise level is expected to be as low as 10 15 r a d / H z 1 / 2 , with a 1 mm laser beam size and 10 mW laser power.

Funder

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3