Photofragmentation laser-induced fluorescence imaging of CH3 by structured illumination in a plasma discharge

Author:

Nilsson SebastianORCID,Ravelid JonasORCID,Park Jin1,Cha Min Suk1,Ehn Andreas

Affiliation:

1. King Abdullah University of Science and Technology(KAUST)

Abstract

Methyl is crucial in plasma-assisted hydrocarbon chemistry, making precise in situ imaging essential for understanding various plasma applications. Its importance in methane chemistry arises from its role as a primary byproduct during the initial phase of methane dehydrogenation. Detecting the CH3 radical is challenging due to its high reactivity and the prevalence of strongly pre-dissociative electronically excited states. To address this, photofragmentation planar laser-induced fluorescence (PF-LIF) techniques have been developed. These involve laser-induced photodissociation of the CH3 radical into CH fragments, which are then probed using another laser. This method allows for both temporally and spatially resolved measurements. However, quantifying the signal from photofragmented species is complicated by the overlap with naturally occurring CH fragments. We employ PF-LIF with structured illumination to distinguish photofragmented species from naturally occurring ones using a frequency-sensitive lock-in technique. This methodology is demonstrated in an atmospheric pressure dielectric barrier discharge (DBD) containing argon and methane, enabling spatially and temporally resolved data acquisition of the CH3 radical. This approach facilitates interference-free PF-LIF measurements of methyl in various applications.

Funder

King Abdullah University of Science and Technology

Kungliga Fysiografiska Sällskapet i Lund

Vetenskapsrådet

HORIZON EUROPE European Research Council

H2020 Energy

Horizon 2020 Framework Programme

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3