Affiliation:
1. Massachusetts General Hospital
2. Harvard Medical School
Abstract
To our knowledge, all existing optical coherence tomography approaches for quantifying blood flow, whether Doppler-based or decorrelation-based, analyze light that is back-scattered by moving red blood cells (RBCs). This work investigates the potential advantages of basing these measurements on light that is forward-scattered by RBCs, i.e., by looking at the signals back-scattered from below the vessel. We show experimentally that flowmetry based on forward-scattering is insensitive to vessel orientation for vessels that are approximately orthogonal to the imaging beam. We further provide proof-of-principle demonstrations of dynamic forward-scattering (DFS) flowmetry in human retinal and choroidal vessels.
Funder
National Institutes of Health
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献