Diel variations in the estimated refractive index of bulk oceanic particles

Author:

Henderikx-Freitas FernandaORCID,Allen James G.,Lansdorp Bob M.,White Angelicque E.ORCID

Abstract

The index of refraction (n) of particles is an important parameter in optical models that aims to extract particle size and carbon concentrations from light scattering measurements. An inadequate choice of n can critically affect the characterization and interpretation of optically-derived parameters, including those from satellite-based models which provide the current view of how biogeochemical processes vary over the global ocean. Yet, little is known about how n varies over time and space to inform such models. Particularly, in situ estimates of n for bulk water samples and at diel-resolving time scales are rare. Here, we demonstrate a method to estimate n using simultaneously and independently collected particulate beam attenuation coefficients, particle size distribution data, and a Mie theory model. We apply this method to surface waters of the North Pacific Subtropical Gyre (NPSG) at hourly resolution. Clear diel cycles in n were observed, marked by minima around local sunrise and maxima around sunset, qualitatively consistent with several laboratory-based estimates of n for specific phytoplankton species. A sensitivity analysis showed that the daily oscillation in n amplitude was somewhat insensitive to broad variations in method assumptions, ranging from 11.3 ± 4.3% to 16.9 ± 2.9%. Such estimates are crucial for improvement of algorithms that extract the particle size and production from bulk optical measurements, and could potentially help establish a link between n variations and changes in cellular composition of in situ particles.

Funder

National Science Foundation

Simons Foundation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3