Affiliation:
1. University of Southern Denmark
Abstract
Intracavity optical metasurfaces with compact and flexible light manipulation capabilities, effectively enrich the implementation of miniaturized and user-friendly orbital angular momentum (OAM) laser sources. Here we demonstrate a wavelength-tunable figure-9 Yb-doped vortex fiber laser solely with standard non-polarization-maintaining single-mode fibers, which utilizes a gap-surface plasmon (GSP) metasurface as the intracavity mode regulation component to generate OAM beams, extending the avenues and related applications for cost-effective OAM laser sources. Gained by the broadband operation range of the metasurface, the figure-9 fiber laser could emit OAM light with center wavelength tunable from 1020 nm to 1060 nm and of high mode purity (about 90%). OAM beams with different topological charges such as l = ±1 have been obtained by changing the metasurface design. The proposed fiber laser with the intracavity GSP metasurface provides a reliable and customized output of OAM beams at the laser source, holding great promise for a wide range of applications in optical communications, sensing, and super-resolution imaging.
Funder
National Natural Science Foundation of China
Beijing Nova Program
Fundamental Research Funds for the Central Universities
State Key Laboratory of Information Photonics and Optical Communications
Villum Fonden
Danmarks Frie Forskningsfond
China Scholarship Council