Multiline molecular tagging velocimetry of nitric oxide at 100  kHz using an injection-seeded burst-mode OPO

Author:

Rodrigues Neil S.ORCID,Jiang Naibo1,Hsu Paul1ORCID,Roy Sukesh1,Danehy Paul M.ORCID

Affiliation:

1. Spectral Energies, LLC

Abstract

An injection-seeded, burst-mode optical parametric oscillator (OPO) operating at a repetition rate of 100 kHz is used to demonstrate the multiline molecular tagging velocimetry of an underexpanded jet using nitric oxide fluorescence. The very narrow linewidth of the OPO system, along with the relatively high pulse energies of the burst-mode system, enables efficient single-photon excitation of nitric oxide along multiple laser beam lines at a high repetition rate. Simultaneous one-dimensional velocity profile measurements were obtained of an underexpanded jet system at six different locations using a reference initial image and single-shot delayed images. A methodology for calculating the uncertainty of single-shot velocity is also described. Mean and root-mean-square velocity profiles are obtained at multiple locations simultaneously over a sampling time of 1 ms. The high-repetition-rate velocity measurements also appear to capture the onset of velocity oscillations and has the potential to reveal velocity frequency content occurring in the tens of kHz. The demonstrated velocimetry technique could be paired with other emerging burst-mode laser capabilities for a quantitative multiparameter gas property or multicomponent gas velocity measurements for supersonic and hypersonic flows, especially within ground test facilities that are limited to very short run durations.

Funder

National Aeronautics and Space Administration

NASA Space Technology Mission Directorate and the Aeronautics Research Mission Directorate

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3