Generation of chemical deposits on fused silica optics and their modulation on the light intensity distribution

Author:

Ye HuiORCID,Cui Zhuangzhuang,Li Zhuang,Yang Wei1,Qian Yuan1

Affiliation:

1. Xiamen University

Abstract

Deposited substances generated from hydrofluoric acid based (HF-based) etching are found to be the precursors that deteriorate the resistance of fused silica optics to laser damage. In this paper, the surface of polished fused silica was treated with a buffer oxide etchant (BOE, 5–10%wt. HF + 10%wt. N H 4 F + 80 85 % w t . H 2 O ). The optic surface area affected by the etching-induced deposits ( N H 4 ) S i F 6 was found to increase significantly with the amount of material removal and sensitivity to the post-cleaning procedure. Three shapes of deposited particles are simultaneously identified on the treated samples. The 3D finite-difference time-domain (FDTD) was used to simulate the light field distribution near the deposited particles, which demonstrates that fused silica is subject to more light modulation when a particle is exposed on the front surface laser than on the rear surface laser. In addition, dense particles barely increase the light intensification factor (LIF) while markedly increase the light focused probability inside fused silica. Moreover, a multiple linear regression (MLR) analysis for the LIF builds a fitting plane model of the LIF and the particle height as well as the horizontal size, revealing that the LIF increases with the size of the deposited particle, especially its height. The laser damage testing results indicate that a deposited layer of  76 n m in height had little influence on the laser-induced damage threshold (LIDT) of the optics and larger deposited particles with up to 9 µm thickness may deteriorate the LIDT to 41.62% that of the reference sample. Both the simulation and experimental results demonstrate that deposited particles with a height of more than 0.1 µm should be inhibited to achieve fused silica with superior laser damage performance.

Funder

Shanghai Sailing Program

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3