Affiliation:
1. Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences
Abstract
The magneto-optical properties of single-crystal silicon were investigated as a function of wavelength and temperature. A bulk free-space traditional Faraday isolator for the radiation with a wavelength of 1940 nm (magnetic field ∼2.8 Т) was implemented. The negative value of the piezo-optical anisotropy ratio of the used material allowed for the development of a Faraday isolator with compensation of thermally induced depolarization without a reciprocal rotator. The potential of single-crystal silicon as a magneto-optical material for Faraday isolators operating at room as well as at cryogenic temperatures in high-power laser radiation was considered. It was shown that single-crystal silicon is highly promising for the development of Faraday devices, including ones for next-generation laser interferometers aimed at detecting gravitational waves.
Funder
Ministry of Science and Higher Education of the Russian Federation
Russian Foundation for Basic Research
Subject
Atomic and Molecular Physics, and Optics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献