Abstract
The exceptional mechanical, electronic, topological, and optical properties, make bismuthene an ideal candidate for various applications in ultrafast saturation absorption and spintronics. Despite the extensive research efforts devoted to synthesizing this material, the introduction of defects, which can significantly affect its properties, remains a substantial obstacle. In this study, we investigate the transition dipole moment and joint density of states of bismuthene with/without single vacancy defect via energy band theory and interband transition theory. It is demonstrated that the existence of the single defect enhances the dipole transition and joint density of states at lower photon energies, ultimately resulting in an additional absorption peak in the absorption spectrum. Our results suggest that the manipulation of defects in bismuthene has enormous potential for improving the optoelectronic properties of this material.
Funder
Postdoctoral Innovation Project of Shandong Province
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
China Postdoctoral Science Foundation
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献