Abstract
The temporal chirp of single femtosecond (fs) pulses will affect the laser-induced ionization process. By comparing the ripples induced by negatively and positively chirped pulses (NCPs and PCPs), the growth rate showed a significant difference, resulting in a depth inhomogeneity of up to 144%. A carrier density model tailored with temporal characteristics showed that NCPs could excite a higher peak carrier density, contributing to a highly efficient generation of surface plasmon polaritons (SPPs) and overall advancement of the ionization rate. Such distinction originates from their contrary incident spectrum sequences. Current work reveals that temporal chirp modulation can control the carrier density in ultrafast laser–matter interaction, which possibly brings an unusual acceleration for surface structure processing.
Funder
National Natural Science Foundation of China
Science and Technology Commission of Shanghai Municipality
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献