Independent dual-single-sideband QPSK signal detection based on a single photodetector

Author:

Zhao Lun1ORCID,Guo Hanlong1,Liu Yejun1,Xiao Jiahui1,Wu Tingwei1,Song Song1,Guo Lei1

Affiliation:

1. Chongqing University of Posts and Telecommunications

Abstract

The two sidebands of the independent dual-single-sideband (dual-SSB) signal can carry different information to achieve higher spectral efficiency. However, the two sidebands of the independent dual-SSB vector signal are received independently. Generally, the receiver divides the signal into two channels. For each channel, we use an optical bandpass filter (OBPF) to select the left sideband (LSB) or right sideband (RSB), respectively. Then a photodetector (PD) is used for photoelectric conversion, followed by subsequent digital signal processing (DSP). To reduce the complexity and cost of the receiver, we propose a new independent dual-SSB vector signal detection scheme based on a single PD combined with conventional DSP. An electric bandpass filter (EBPF) filters out high-frequency components after photoelectric conversion, and then the signal is quadrature demodulated and processed by the DSP algorithm. The LSB and RSB are quadrature phase-shift keying (QPSK) modulated with an initial phase difference of π/4. Simulation results show that the proposed scheme performs better bit error rate (BER). For back-to-back (BTB) transmission, the BER of 2-Gbaud independent dual-SSB vector signal (1-Gbuad RSB and 1-Gbaud LSB) can reach the hard-decision forward error correction (HD-FEC) threshold of 3.8 × 10−3 when the input optical power into PD is −20 dBm. For 1-km and 2-km weak turbulence free-space optical (FSO) channel transmission, the BER of 2-Gbaud independent dual-SSB vector signal can reach the HD-FEC threshold when the input optical power into PD is −18.8 and −17 dBm, respectively. For 1-km weak turbulence FSO channel transmission, the BER of 4-, 8-, and 16-Gbuad independent dual-SSB vector signal can reach the HD-FEC threshold when the input optical power into PD is −17.8, −16, and −15 dBm, respectively.

Funder

National Natural Science Foundation of China

Chongqing Municipal Education Commission

Chongqing University of Posts and Telecommunications

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3