In silico full-angle high-dynamic range scattering of microscopic objects exploiting holotomography

Author:

Kang Seung Kyu1ORCID,Kim Kyoohyun2,Jeong Jinsoo1,Hong Sunghee1,Park YongKeunORCID,Shin Jonghwa

Affiliation:

1. Korea Electronics Technology Institute

2. Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin

Abstract

Accurate optical characterization of microscopic objects is crucial in academic research, product development, and clinical diagnosis. We present a method for obtaining full and high-dynamic range, angle-resolved light scattering attributes of microparticles, enabling distinction of variations in both overall morphology and detailed internal structures. This method overcomes previous limitations in observable scattering angles and dynamic range of signals through computationally assisted three-dimensional holotomography. This advancement is significant for particles spanning tens of wavelengths, such as human erythrocytes, which have historically posed measurement challenges due to faint side-scattering signals indicative of their complex interiors. Our technique addresses three key challenges in optical side-scattering analysis: limited observational angular range, reliance on simplified computational models, and low signal-to-noise ratios in both experimental and computational evaluations. We incorporate three-dimensional tomographic complex refractive index data from Fourier-transform light scattering into a tailored finite-difference time-domain simulation space. This approach facilitates precise near-to-far-field transformations. The process yields complete full-angle scattering phase functions, crucial for particles like Plasmodium falciparum-parasitized erythrocytes, predominantly involved in forward scattering. The resultant scattering data exhibit an extreme dynamic range exceeding 100 dB at various incident angles of a He-Ne laser. These findings have the potential to develop point-of-care, cost-effective, and rapid malaria diagnostic tools, inspiring further clinical and research applications in microparticle scattering.

Funder

Institute of Information and Communications Technology Planning and Evaluation

National Research Foundation of Korea

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3