Average capacity of an underwater wireless communication link with the quasi-Airy hypergeometric-Gaussian vortex beam based on a modified channel model

Author:

Chen Hang1,Zhang Peng1,He Shuang1,Dai Hui1,Fan Yunlong1,Wang Yuanxin2,Tong Shoufeng1

Affiliation:

1. Changchun University of Science and Technology

2. Jilin University

Abstract

Prompted by alleviating the random perturbation of underwater channel and enhancing the performance for the orbital angular momentum (OAM) -based underwater wireless optical communication (UWOC), the quasi-Airy Hypergeometric-Gaussian (QAHyGG) vortex beam is first proposed and demonstrated. Moreover, an underwater channel model is first modified for more accurate simulated results of the propagation property of various beams. Based on the modified model, the transmission and communication performance of three different OAM-carrying beams (the Gauss vortex (GV) beam, the Hypergeometric-Gaussian (HyGG) vortex beam, and the QAHyGG vortex beam) are comparatively studied. In addition, the parameters optimization of the QAHyGG vortex beam is made for further enhancing the average capacity. The results show that the QAHyGG vortex beam exhibits higher received power and lower crosstalk probability under different channel conditions. The average capacity of the QAHyGG vortex beam has enhanced by ∼8% and ∼27% compared with the HyGG vortex beam and the GV beam at 100m, respectively. The QAHyGG vortex beam is more suitable in an OAM-based UWOC system with a limited-size receiving aperture or lower transmit power. Besides, the average capacity will improve effectively at longer distances with the optimized beam parameters. These research results can provide advances in designing the practical OAM-based UWOC system.

Funder

National Natural Science Foundation of China

Department of Science and Technology of Jilin Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3