Tunable all-optical liquid crystal lens based on the thermo-plasmonic effect

Author:

Esmaeili Sahar,Khoshkhati Farid1ORCID,Mehrzad Hossein,Ahmadalidokht Isa2,Mohajerani EzeddinORCID

Affiliation:

1. University of Tehran

2. National University of Singapore

Abstract

Surface plasmon resonance (SPR) thermal effects have been the focus of researchers lately and are commonly used in sensors, micro heaters in integrated circuits, and other applications. In this study, a new type of tunable all-optical liquid crystal (LC) lens is fabricated by employing the SPR thermal effects. Due to the absorption of pump light by gold nanoparticles, the generated heat is transferred to the surrounding LC layer, leading a radial gradient distribution of LC molecules. Passing a probe light through the center of the fabricated cell, a lens shaped optical phase retardation observed. The temperature increase with intensification of the pump light power has been numerically calculated. In addition, the focal length of the lens reduces from 157.8 to 13.1 cm during this process. The tunable all-optical LC lens is a fascinating new concept that could open up new horizons and has numerous applications. It has a simpler and cheaper structure compared to electronic lenses, provides greater stability than other all-optical counterparts, and allows for optical control of the focal length.

Publisher

Optica Publishing Group

Subject

Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3