Simulation of gradient period polarization volume gratings for augmented reality displays

Author:

Yang Canran,Wei Ran,Yang Wenchang1,Weng YishiORCID,Gu Yuchen,Wang Chuang,Shen Zhongwen2,Wang Baoping3,Zhang Yuning3ORCID

Affiliation:

1. Jiangsu North Huguang Opto-electronics Co., Ltd.

2. Nanjing Vocational University of Industry Technology

3. Shi-Cheng Laboratory for Information Display and Visualization

Abstract

Augmented reality (AR) displays are gaining attention as next-generation intelligent display technologies. Diffractive waveguide technologies are progressively becoming the AR display industry's preferred option. Gradient period polarization volume holographic gratings (PVGs), which are considered to have the potential to expand the field of view (FOV) of waveguide display systems due to their wide bandwidth diffraction characteristics, have been proposed as coupling elements for diffraction waveguide systems in recent years. Here, what we believe to be a novel modeling method for gradient period PVGs is proposed by incorporating grating stacking and scattering analysis utilizing rigorous coupled-wave analysis (RCWA) theory. The diffraction efficiency and polarization response were extensively explored using this simulation model. In addition, a dual-layer full-color diffractive waveguide imaging simulation using proposed gradient period PVGs is accomplished in Zemax software using a self-compiled dynamic link library (DLL), achieving a 53° diagonal FOV at a 16:9 aspect ratio. This work furthers the development of PVGs by providing unique ideas for the field of view design of AR display.

Funder

Basic Research Program of Jiangsu Province

National Natural Science Foundation of China

Ordnance Industry Application Innovation Project of China

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3