Multidisciplinary integrated optimal design process for optomechanical structures

Author:

Kim Chol-HyonORCID,Kim Jong-Nam1,Kim Sun-Chol1,Yun Myong-Song1,Kim Gyong-Jin1,Han Yong-Gil1

Affiliation:

1. Kim Chaek University of Technology

Abstract

This paper presents an integrated design process for optomechanical structures based on multidisciplinary optimization. The proposed integrated optimal design process comprises a finite element analysis by ANSYS Workbench, the MATLAB optomechanical transfer program, an optical analysis by ZEMAX, and the multidisciplinary optimization solver by Isight. In ANSYS Workbench, the deformation of optical surfaces, structures, and responses according to the design requirements is calculated in one project. Then, Zernike polynomial coefficients are calculated from surface deformation data of optical surfaces through a MATLAB optomechanical transfer program. In ZEMAX, the Zernike polynomial coefficients are imported into optical surface models of an optical system; then, optical performance parameters, such as the wavefront error, optical aberration, MTF, and OPD, are calculated. In the Isight environment, automatic iterative computations are performed between these three programs and, as a result, the design dimensions of optomechanical structures are determined, satisfying the design requirements and improving the performance of an optical system. By using this integrated optimal design process, the optimal design and analysis for a complete optomechanical structure, as well as individual structure parts, can be performed successfully. In this paper, the optimal design problem for three parts of a Cassegrain telescope, which consists of a primary mirror with an outer diameter of 156 mm and a secondary mirror with an outer diameter of 46 mm, was taken as an example. By using optimal parts, the image wavefront error of the Cassegrain telescope was decreased from 29.9 to 16.1 nm.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3