Abstract
We demonstrate a 3× thermal phase sensitivity reduction for a hollow-core fiber (HCF) Fabry–Perot interferometer by winding the already low temperature sensitivity HCF on to a spool made from an ultralow thermal expansion material. A record low room temperature fiber coil phase thermal sensitivity of 0.13 ppm/K is demonstrated. The result is of particular interest in reducing the thermal sensitivity of HCF-based Fabry–Perot interferometers (for which existing thermal sensitivity reduction methods are not applicable). Our theoretical analysis predicts that significantly lower (or even zero) thermal sensitivity should be achievable when a spool with a slightly negative coefficient of thermal expansion is used. We also suggest a method to fine-tune the thermal sensitivity and analyze it with simulations.
Funder
China Scholarship Council
Royal Academy of Engineering
European Research Council
Engineering and Physical Sciences Research Council
Subject
Atomic and Molecular Physics, and Optics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献