Affiliation:
1. Wuhan University
2. Ministry of Nature Resources of the People’s Republic of China
3. University of New Hampshire
4. NASA Goddard Space Flight Center
5. University of California Santa Barbara
Abstract
The Arctic Ocean (AO) is the most river-influenced ocean. Located at the land-sea interface wherein phytoplankton blooms are common, Arctic coastal waterbodies are among the most affected regions by climate change. Given phytoplankton are critical for energy transfer supporting marine food webs, accurate estimation of chlorophyll a concentration (Chl), which is frequently used as a proxy of phytoplankton biomass, is critical for improving our knowledge of the Arctic marine ecosystem and its response to the ongoing climate change. Due to the unique and complex bio-optical properties of the AO, efforts are still needed to obtain more accurate Chl estimates, especially for coastal waters with high colored detrital material (CDM) content. In this study, we optimized the the Garver-Siegel-Maritorena (GSM) algorithm, using an Arctic bio-optical dataset comprised of seven wavelengths (the original GSM wavelengths plus 625 nm). Results suggested that our tuned algorithm, denoted GSMA, outperformed an alternative AO GSM algorithm denoted AO.GSM, but the accuracy of Chl estimates was only improved by 8%. In addition, GSMA showed appreciable robustness when assessed using a satellite image and two non-Arctic coastal datasets.
Funder
Canada First Research Excellence Fund
ArcticNet
Stratégie de Mesure Autonome, Agile, Robuste et Transdisciplinaire
Natural Sciences and Engineering Research Council of Canada
NASA ROSES project
Japan Aerospace Exploration Agency
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献