Emission and sensing of high-frequency terahertz electric fields using a GaSe crystal

Author:

Carnio B. N.1,Zhang M.,Schunemann P. G.2ORCID,Moutanabbir O.1,Elezzabi A. Y.

Affiliation:

1. École Polytechnique de Montréal, C. P. 6079, Succ. Centre-Ville

2. BAE Systems

Abstract

A GaSe crystal cut along the (001) crystallographic plane is investigated for the emission and detection of high-frequency (i.e. up to ∼20 THz) electric fields. To date, a comprehensive analysis on high-frequency difference frequency generation and electro-optic sensing in GaSe has not been performed and should consider aspects such as electric field polarization orientation, symmetries inherent to the crystal structure, and the various possible generation and detection phase-matching arrangements. Herein, terahertz radiation generation is investigated for various excitation electric field polarizations as the GaSe crystal is rotated in the (001) plane. Subsequently, the crystal is rotated out-of-plane to investigate the difference frequency generation and electro-optic sampling phase-matching conditions for various arrangements. The measured terahertz radiation spectra show peak generation at the frequencies of 10, 16, and 18 THz (dependent on the GaSe crystal orientation), in agreement with the frequencies exhibiting perfect phase-matching. GaSe has the potential to emerge as the primary crystal for the emission and detection of high-frequency electric fields, such that this comprehensive analysis is necessary for the widespread adoption and practical implementation of GaSe as a high-frequency source crystal.

Funder

Defence Research and Development Canada

Natural Sciences and Engineering Research Council of Canada

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3