Abstract
Currently, mainstream light detection and ranging (LiDAR) systems usually involve a mechanical scanner component, which enables large-scale, high-resolution and multi-spectral imaging, but is difficult to assemble and has a larger system size. Furthermore, the mechanical wear on the moving parts of the scanner reduces its usage lifetime. Here, we propose a high-resolution scan-less multi-spectral three-dimensional (3D) imaging system, which improves the resolution with a four-times increase in the pixel number and can achieve multi-spectral imaging in a single snapshot. This system utilizes a specially designed multiple field-of-view (multi-FOV) system to separate four-wavelength echoes carrying depth and spectral reflectance information with predetermined temporal intervals, such that one single pixel of the SPAD array can sample four adjacent positions through the four channels’ FOVs with subpixel offset. The positions and reflectivity are thus mapped to wavelengths in different time-bins. Our results show that the system can achieve high-resolution multi-spectral 3D imaging in a single exposure without scanning component. This scheme is the first to realize scan-less single-exposure high-resolution and multi-spectral imaging with a SPAD array sensor.
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献