Affiliation:
1. Massachusetts Institute of Technology
2. The Charles Stark Draper Laboratory, Inc.
Abstract
Chalcogenide phase change materials (PCMs) are truly remarkable compounds whose unique switchable optical and electronic properties have fueled an explosion of emerging applications in electronics and photonics. Key to any application is the ability of PCMs to reliably switch between crystalline and amorphous states over a large number of cycles. While this issue has been extensively studied in the case of electronic memories, current PCM-based photonic devices show limited endurance. This review discusses the various parameters that impact crystallization and re-amorphization of several PCMs, their failure mechanisms, and formulate design rules for enhancing cycling durability of these compounds.
Funder
Charles Stark Draper Laboratory
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Subject
Electronic, Optical and Magnetic Materials
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献